The "Syringe"
antenna revised...
(An improvment to the "Resonant Feed Line
Dipole").
Preliminar: (Begun in spanish:
2006-11-11, in english: 2008-02-06) - Last translation update 2008-02-17)
by Miguel R. Ghezzi (LU 6ETJ)
Hugo Martinez (LU 9DR)
www.solred.com.ar/lu6etj
www.solred.com.ar/solvegj
My english translation perhaps it is not so good to understand the text well, for that reason in a temporary way I will leave close the original paragraphs in Spanish to check.
Special thanks
to my very good friend Marcelo
Chiesa (LW 3EOV) for his corrections and suggestions to my poor
translations...
¡Symbol font required!
Presten atención a este dipolo. La primera vez que lo vi, creo que fue en al handbook de 1996 pag. 20-17, con el nombre de "Resonant feed line dipole". En esta dirección hay una descripción completa de Montgomery Northrup (N5 ESE): http://www.io.com/~n5fc/rfd.htm (la imagen que acompaña este artículo fue tomada de su sitio web). La antena fue descrita por primera vez en QST de Agosto de 1991 por James Taylor.
Pay attention to this antenna dipole. The first time I saw it, I believe was in the 1996 ARRL Handbook p. 20-17, named "The resonant feed line dipole". In the next URL there is a complete Montgomery Northrup's (N5 ESE) description: http://www.io.com/~n5fc/rfd.htm (the figure below was taken from his web article). The antenna was first time described in August of 1991 QST by James Taylor.
Do visit his website to see more pictures...
Para comprender el principio de funcionamiento conviene recordar que, en RF, la región exterior del blindaje de un cable coaxil (bastante superficial), existe como un conductor totalmente independiente del constituido por la región interior del mismo blindaje y está eléctricamente tan separada de la parte exterior como si efectivamente existiera un aislante convencional entre estas dos superficies, ¡ambas superficies conductoras, aunque parezca extraño, están aisladas por el mismo material conductor...!
Este interesante fenómeno se debe al llamado "Efecto Pelicular" el cual hace que la corriente de radiofrecuencia circule solamente por la zona cercana a la superficie de cualquier buen conductor (la corriente no puede penetrar en ellos y gracias a eso podemos emplearlos como blindajes).
To understand the operation principle we should remember that, when applying RF, the external region of a coaxil cable shield (quite superficial), it exists as a completely independent conductor (ideally) of the one constituted by the inner region of the same shield and it is electrically so separated from the external part as if indeed an conventional insulating material. This two conductive surfaces, although it seems strange, are isolated by the same conductive shielding material...!
This interesting phenomenon takes place due
to the "Skin Effect" which makes that the RF current only circulates
near areas close to the surface of any good conductor (the current cannot penetrate in
them and thanks to that we can use them as shielding).
Por tal razón, las líneas de trasmisión coaxiles están formadas únicamente
por
la superficie exterior del conductor central y la superficie interior del blindaje
(entendiendo por superficie un espesor muy pequeño del material
conductor).
De esta manera, la superficie exterior del cable en realidad no forma parte
de la línea de trasmisión, es como si se tratara de un conductor
independiente concéntrico; aprovecharemos este conductor independiente para
construir una de las ramas del dipolo la cual, para todos los fines
prácticos, se comporta como un conductor "hueco", por cuyo interior
corre la verdadera línea de trasmisión...
For such a reason, coaxials transmission lines are only formed by the central conductor's external surface and
the internal surface of the shield (understanding for surface a very small
thickness of the conductive material).
This way, the external surface of the cable in fact is not part of the
transmission line, it is as a concentric independent conductor; we
will take advantage of this independent conductor to build one of the dipole
legs, the one which, for all the practical purposes, it behaves as a
"hollow" conductor for whose interior the real transmission line runs...
Esta línea
de trasmisión coaxil "interior", se encontrará al fin de su recorrido con
el alambre unifilar de la derecha (una de las ramas del dipolo), por un
lado, y con el lado exterior de la malla (a la izquierda del dibujo), por otro; en ese punto es donde
efectivamente se conectan eléctricamente (para la RF) el lado interior con
el exterior del blindaje que pasa a ser, entonces, la otra rama del dipolo.
Resumiendo, al final de la línea encontramos las dos ramas que constituyen un dipolo común y
corriente, la de la derecha es el cable unifilar, la de la izquierda es la
parte exterior de la malla del coaxil.
This "internal" coaxial transmission
line, will find at its end the unifilar wire on the right (one of dipole
branches), on one hand, and with the external side of the braid (to the left
of the drawing), for another; in that point it is where indeed they are
electrically connected (for the RF) the internal side with the outer side
of the coaxial cable shield that becomes the other branch of the dipole.
Summarizing: at the end of the line finds the two branches that form an
ordinary dipole, on the right it is the unifilar wire, on the left the outer
side of the coaxial cable shield.
Para que la longitud de la rama constituida por la parte externa de la malla tenga el cuarto de onda reglamentario para ser una rama del dipolo, es necesario interrumpirla para la RF que circula por ella; por supuesto no podemos simplemente cortarla, pues cortaríamos también la superficie interior que, como vimos, si, forma parte de la línea. allí es donde aparece nuestra trampa "rara"...
We need to interrupt the dipole leg which is the outer side of the coaxial cable shield as we need it to be a quarter-wavelenght but we cannot cut it as in that case we will be cutting the interior surface as well which is part of the transmission line. Here is where our rare trap comes to…
Mi propósito consistía en emplearla como sugiere el amigo Montgomery, izada mediante un barrilete (cometa). Lo que no me convencía era la pobre impedancia de tales chokes para estar en el extremo de alta Z de un dipolo; si hubiera que elevarla haciéndolo autorresonante con sus propia capacidad, el peso que agregaría al conjunto no me alegraba. Aprovechando la visita de mi amigo Hugo Martínez (LU 9DR), nos dedicamos a realizar experimentos.
My purpose consisted on using it like Montgomery suggests, hoisted by means of a small kite. What didn't convince me was the poor impedance of such choke to be on the high Z end of a dipole; if it was necessary to elevate the Z making it auto-resonant with its own capacity, the weight that it would add to overall didn't convince me. Taking advantage of my friend's Hugo Martínez (LU 9DR) visit, we carried out experiments.
I didn't
like the uncoupling choke because it would not have enough reactance to
interrupt feedline's RF Current in that high impedance point, so
the antenna was very pretty, but we were sure that it would not work well in
such a sense (it doesn't mean that it would not work at all).
Between mate and mate (creole popular infussion) served by my
beautiful wife Lucy (LU 2ET), we proceeded to verify it with an "ad hoc" RF
ammeter made with a current transformer made of a little bulb and a toroid threaded over the line. We saw
that the choke allowed so much current to pass through. If to
solve it we had to add the necessary turns or core, it would weigh more than
the convenient. It seemed that it would be better to use a conventional
end-feed unifilar wire antenna, but that solution has its own inconveniences, we were in an
catch 22 situation...
The inspiring Ham minds became present. I thought a better solution (that now is obvious, for me), it could be a modest contribution from our hobby to the millions of variants of published Ham antennas :>)
La solución: reemplazar el choke con una trampa sintonizada en paralelo
formada con unas pocas espiras del mismo cable coaxil arrolladas en forma de solenoide (igual que el choke pero con menos
espiras), con un capacitor entre extremos del bobinado así constituido. Ambos terminales del condensador se sueldan a la malla como muestra la
figura (la zona oscura representa la malla).
No he visto este método de desacoplamientoi en la literatura y me parece útil para otras
aplicaciones (como por ejemplo una trampa-balun o la antena
"Pamperita" (clic
aquí para visitar artículo), según veremos).
The solution: to replace the choke with a
tuned parallel trap formed with some few turns of the same coaxial cable
winded as a solenoid form (the same as the choke but with less turns), with
a capacitor connected among ends of the winding this way built. Both
capacitor's terminals are soldered to the braid as above figure shows (dark area
represents the braid).
I have not seen this uncoupling method in the literature which seems to me
useful for other applications (for example a trap-balun or the "Pamperita"
antenna (click here to visit article), as we will see).
The next week,
Hugo returned with a trap, quite big, but very well built, that
demonstrated to work perfect.. our "ammeter" does not shows current
beyond the trap anymore...
Being almost dark we were outdoors to test it, risen by a Rokkaku kite.
Operation: perfect. You can see the new system in the following figure.
![]() |
Pictures of some traps made by Hugo Martínez (LU 9DR) |
|
![]() |
![]() |
Three trap constructive variants. |
Internal sights. You can see tuning capacitors inside. |
![]() |
![]() |
A center made to avoid mechanical stress on the soldering between the coaxial center conductor and the plain wire other leg. |
Variant to use the center as standard dipole (two branches) or Resonant Feed Line Dipole (removing the left wire shown connected to the coaxial braid by a terminal and fixing screw). |
Generalidades acerca de las trampas
(Lo que sigue es válido para trampas de antenas en general).
Para que la trampa sea efectiva, es
necesario que su impedancia sea mucho mayor que la existente en el extremo
de la rama del dipolo que se forma con esta interesante configuración. La
impedancia en ese punto del dipolo es muy elevada, fácilmente puede alcanzar
los 5000 ohms o más. Para que la trampa sea tal, su impedancia en frecuencias
cercanas a la de resonancia ha de ser de cuatro a diez veces mayor, esto
significa valores superiores a los 20000 ohms o mejor.
La impedancia a resonancia depende del Q de la bobina y el capacitor y
también de la relación L/C. Una relación L/C elevada produce a igual Q más
impedancia que una L/C más baja. Comparando las curvas se ve claramente:
Generalities about the traps
(Valid for antenna traps in general).
For the trap to be effective, it is
necessary its impedance be much higher that the impedance on the end of the
dipole leg formed with this interesting configuration. The impedance in
that point of the dipole is very high, easily it can reach 5000 ohms or
more. So that the trap behaves as, its impedance in frequencies near to
resonance must be from four to ten times higher, this means as high as 20000
ohms or better.
The resonance impedance depends on the coil's and capacitor's Q and also on the
L/C ratio. A high L/C ratio, to same Q, gives higher impedance than a lower
L/C ratio. Comparing the curves below you can see it clearly:
La curva roja corresponde al módulo de la impedancia de una trampa formada por un inductor de 1 mH en paralelo con un capacitor de unos 125 pF. El Q de la bobina es 100, por lo tanto su resistencia equivalente paralelo está en el orden de los 8900 ohms, que es el valor mostrado en el recuadro amarillo (la imprecisión es por la dificultad de colocar el cursor en el punto exacto).
The red curve corresponds to impedance module of a trap formed by an 1 mH inductor in parallel with a capacitor of about 125 pF. Coil's Q is 100, therefore its parallel equivalent resistance it is about 8900 ohms; that is the value shown in the yellow square (imprecisión is due to the difficulty of placing the cursor application program in the exact point of the curve).
La curva azul representa la impedancia de una trampa compuesta por un
inductor de 20 uH en paralelo con unos 6,3 pF, también con un Q de 100, lo
cual representa una resistencia equivalente paralelo de unos 177000 ohms.
Vemos que con este par de valores la trampa es más eficaz para interrumpir
el circuito, pero en el extremo inferior de la banda (no se muestra) cae a
unos 50000 ohms. Una trampa formada con un inductor de 5 uH en paralelo con
unos 25 pF podría funcionar.
The blue curve represents the impedance of a trap composed by a 20 mH inductor in parallel with 6,3 pF capacitor, also with Q=100, that give us a parallel equivalent resistance of about 177000 ohms. We see with this couple of values the trap is more effective to interrupt the circuit, but in the lower end of the band (not shown) it falls down to about 50000 ohms. A trap formed with a 5 mH inductor in parallel with a capacitor with value about 25 pF could work better.
Nótese que la curva roja aunque tiene menor Z es muy plana y amplia (poco
selectiva), esa trampa se prestará mejor para otras aplicaciones (como
veremos en un próximo artículo sobre una trampa balun).
Notice that the red curve although it has got smaller Z it is very plane and wide (not very selective), that trap will be better for other applications (like the one you in my article: "The trap Balun").
Usos prácticos
Practical uses
Works Consulted / Bibliography :
Taylor James E (W2 OZH). RFD-1 and RFD-2: Resonat Feed-Lines dipoles, QST, Agosto de 1991 pag 24
The Radio Amateur Handbook, pag 20-17. ARRL Press. 1996
Copyright © 2006 - 2012 Miguel Ricardo Ghezzi - LU 6ETJ - Argentina..